
November 2016

EPL, 116 (2016) 48002 www.epljournal.org
doi: 10.1209/0295-5075/116/48002

Slow rate fluctuations in a network of noisy neurons
with coupling delay

I. Franović
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Abstract – We analyze the emergence of slow rate fluctuations and rate oscillations in a model
of a random neuronal network, underpinning the individual roles and interplay of external and
internal noise, as well as the coupling delay. We use the second-order finite-size mean-field model
to gain insight into the relevant parameter domains and the mechanisms behind the phenomena.
In the delay-free case, we find an intriguing paradigm for slow stochastic fluctuations between the
two stationary states, which is shown to be associated to noise-induced transitions in a double-well
potential. While the basic effect of coupling delay consists in inducing oscillations of mean rate,
the coaction with external noise is demonstrated to lead to stochastic fluctuations between the
different oscillatory regimes.

Copyright c© EPLA, 2016

Spontaneous activity of cortical neurons may be char-
acterized as a doubly stochastic process, reflected in
a high spike-train variability on a short timescale [1],
and slow irregular firing rate fluctuations on longer
timescales [2,3]. Such slow fluctuations with typical fre-
quencies of ∼0.4–2 Hz are recorded via EEG or in mea-
surements of local field potentials as the network-level
events [4,5], which comprise “on” episodes of high spik-
ing and synaptic activity interspersed with “off” episodes
of relative quiescence [6]. The dynamical substrate be-
hind the associated transitions lies in coherent switching
of individual neurons between the supra-threshold depo-
larized “up” states [7,8] and the hyperpolarized “down”
states of membrane potential [9]. Alternation of “up” and
“down” states [10–12] is a pervasive phenomenon found
in sensory, motor, associative and executive cortical areas
during sleep [13], under anesthetized [14] and awake con-
ditions [15], as well as in the case of in vitro preparations
under different experimental protocols [16–18]. Assuming
a number of prominent functional roles, slow rate fluctua-
tions are deemed likely to contribute to cortical response
variability [19], and have further been found to mediate
certain forms of learning and memory [20–24].

In spite of an extensive experimental account, a compre-
hensive theoretical insight into the described phenomena
is still lacking. In this letter, we report on generic mech-
anisms behind slow rate fluctuations in large neuronal
assemblies by focusing on specific roles and interplay of
external and intrinsic neuronal noise [25–27], as well as
the coupling delay [28,29]. The individual impact of these
three ingredients and their co-effects are investigated in
this context for the first time.

Note that the terminology concerning the collective dy-
namics of the network model is fixed as follows. The term
“oscillations of mean rate”, or briefly “rate oscillations”,
will be reserved for the delay-induced regular oscillations
of the mean (assembly-averaged) rate. Nonetheless, the
slow fluctuations of the network mean rate that emerge
in the presence of noise between the two deterministic at-
tractors, be they the two fixed points (analogues of the
“up” and the “down” state in our model), or the two
limit cycles, will be referred to as the “slow stochastic
fluctuations”. In order to analyze the latter, we derive a
second-order stochastic mean-field model for the collective
network dynamics. It will be demonstrated that the sta-
bility and bifurcation analysis of the effective model can
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Fig. 1: (Color online) (a) Scheme of a network model. (b) Bifurcation diagram on the I-α plane obtained for the mean-field
model at τ = 0 and fixed B = 0.004. The “up” and the “down” states coexist in the hatched region between the two branches
of saddle-node bifurcations (solid lines). The latter meet at a cusp point (CP), where the pitchfork bifurcation occurs. Within
the shaded domain, the condition ω2 > 0 is satisfied, such that the system may undergo Hopf bifurcation for τ > 0. (c) R(α)
bifurcation diagram determined analytically for the mean-field model at τ = 0 and fixed B = 0.004, I = 0.15. The “up” state
(red line) and the “down” state (blue line) are separated by the unstable state (dashed line). The system lies in the close
vicinity of the cusp point.

be applied to infer the parameter domains relevant for the
slow rate fluctuations.

Our use of the mean-field approach can be interpreted
in the context of recent research, where the interest has
shifted from classical problems treated by deterministic
neural field models [30–33] to a corpus of issues related
to how fluctuations and correlations affecting individual
neurons are translated to a network level, inducing or
modifying the different forms of collective behavior [34,35].
Techniques applied to derive stochastic mean-field models
can broadly be cast in two classes. The “top-down” frame-
work features perturbation techniques, such as system-
size expansion or field-theory methods [34,36], whereas
the “bottom-up” strategies, implemented by the popula-
tion density method [37] or the augmented moment ap-
proach [38], involve building a macroscopic model from
stochastic equations for local processes. Our derivation
pertains to the latter category, containing certain novel-
ties which are indicated below.

Model. – We consider a population of N excitatory
neurons following a rate-based dynamics given by [39–41]

dri

dt
= −λri + H(κui,τ + I +

√
2Bηi) +

√
2Dξi, (1)

where unit indices belong to a i ∈ {1, . . . , N} range, while
λ and I stand for the relaxation rate and the bias current,
respectively. Note that κ denotes a normalized coupling
coefficient κ = c/N , with c being the coupling strength.
The coupling delay, referred to as τ , is assumed to be uni-
form over the network. Each neuron i receives from the
network an input ui,τ =

∑
j aijrj,τ , whereby a shorthand

notation rj,τ ≡ rj(t−τ) is introduced for the delayed vari-
ables. The interaction topology, specified by the elements
of the adjacency matrix aij ∈ {0, 1}, conforms to a random
network with connectedness probability p ∼ 0.1–0.2, see
fig. 1(a). Although recent experiments provide evidence

for nonrandom structure of neural circuits even on mi-
croscopic level [42,43], sparse random architecture main-
tains a degree of biological plausibility [44] and has been
adopted as paradigmatic [37,45,46].

The gain function H is generally a nonlinear function,
which can be explicitly determined for the particular mod-
els of spiking neurons [37,46]. The local dynamics is influ-
enced by two independent sources of noise. The external
noise ηi, which is attributed intensity B, is associated to
fluctuating synaptic input from the embedding environ-
ment, whereas the intrinsic noise ξi, assigned with inten-
sity D, primarily derives from the stochastic dynamics of
ion-channels.

The network dynamics is analyzed via a second-order
stochastic mean-field model that incorporates an implicit
Gaussian closure hypothesis, in a sense that the mean rate
R(t) = 1

N

∑
i ri(t) and the associated variance S(t) =

1
N

∑
i ri(t)2 − R(t)2 are considered sufficient to describe

the system’s macroscopic behavior [47–51]. The detailed
derivation of the mean-field model in the case of instanta-
neous couplings (τ = 0) has been carried out in our pre-
vious paper [41]. Given that generalization to the case of
delayed couplings proceeds in a fashion analogous to [41],
here we only summarize the main points and provide the
resulting equations.

The key elements in the derivation of R dynamics in-
clude i) the Ansatz that the local variables may be writ-
ten as ri = R +

√
Sρi, where ρi are uncorrelated variables

with zero mean and unit variance [52], and ii) the devel-
opment of the gain function into Taylor series about the
average input X = cpR + I for the neurons within the
network. In [41], we have argued that the approximation
regarding the character of {ρi} holds under two condi-
tions: first, that the distribution of inward connectivity
degrees is sufficiently narrow so that the distribution of
ri is unbiased, and second, that the fraction of shared in-
put between any two neurons is small, which renders their

48002-p2



Slow rate fluctuations in a network of noisy neurons with coupling delay

outputs uncorrelated. Given that the fraction of shared
input between any two neurons is p, and that the coeffi-
cient of variation for the number of incoming connections
amounts to

√
(1 − p)/pN , one estimates that the two con-

ditions above will be met if i) the connectivity is small,
p � 1, and ii) the network is sufficiently large, N � 1/p.
In terms of practical application, in [41] we have further
numerically verified that the validity of the mean-field ap-
proximation for p = 0.2 (the value kept fixed throughout
this Letter) begins to degrade considerably if the network
size is smaller than N ≈ 70.

Taking the assembly average of eq. (1) and neglecting
the terms O(1/N2), one ultimately arrives at

dR

dt
= −λR + H(Xτ ) +

Gτ

N
+

√
Ψτ

N
ζ. (2)

In eq. (2), we have used the notation H(Xτ ) = H(Xτ ) +
BH′′(Xτ ), Gτ = c2H′′(Xτ ) [p(1 − p)R2

τ + pSτ ], and Ψτ =
2D + [2B + c2p2Sτ ] (H′(Xτ ))2, where H′(Xτ ) ≡ dH

dX (Xτ )
and H′′(Xτ ) ≡ d2H

dX2 (Xτ ). The variable ζ is a Gaussian
white noise that accounts for the joint macroscopic effect
of several noisy terms. In particular, the three terms in
Ψτ describe the impact of the internal noise, the exter-
nal noise, and the so-called network noise, respectively,
whereby the latter derives from fluctuations of the neu-
rons’ output signals. Note that the indicated noise terms
can be grouped together because their sources are inde-
pendent by construction of the model.

Derivation of dynamics for the variance requires taking
the appropriate Itô derivatives, whereby the final result
reads

dS

dt
= −2λS + 2D + 2B(H′(X))2. (3)

Note that S affects R dynamics only via an O(1/N) term,
cf. eq. (2). For this reason, we can neglect the impact of
the terms O(1/N) in the evolution of S.

In the thermodynamic limit N → ∞, the mean-field
model comprised of (2) and (3) is completely determinis-
tic, with R dynamics being independent of S. For large
but finite N , the finite-size effects become manifest in a
twofold fashion. First, a deterministic correction term
Gτ/N emerges, which only marginally changes the r.h.s.
of eq. (2). The more important finite-size effects in eq. (2)
are associated to the stochastic term of intensity Ψτ/N .
In what follows, it will be demonstrated that the latter can
under certain conditions give rise to slow rate fluctuations.

Our approach will consist in carrying out the stabil-
ity and bifurcation analysis of the mean-field model in
the limit N → ∞ in order i) to gain insight into the pa-
rameter domains which admit the slow fluctuations of the
mean rate in the case τ = 0, as well as ii) to outline
the regions that facilitate the delay-induced oscillations
and the stochastic fluctuations between the different os-
cillatory regimes for τ > 0. Before proceeding, in anal-
ogy to [41], we specify the particular form of the gain

function as

H(X) =

⎧⎨
⎩

0, X ≤ 0,
3X2 − 2X3, 0 < X < 1,
1, X ≥ 1.

(4)

Analysis for thermodynamic limit. – As indicated
above, in the thermodynamic limit the evolution of R be-
comes independent of S. Given the gain function (4), it is
convenient to introduce a compound connectivity param-
eter α = cp and rewrite (2) in terms of X , which yields

dX

dt
= −2αX3

τ + 3αX2
τ − 12αBXτ − X + 6αB + I. (5)

In the absence of delay, one may show that (5) always
admits at least one stable stationary state. For fixed B,
X dynamics undergoes a codimension-2 pitchfork bifurca-
tion at αp = 2/[3(1−8B)] and Ip = (1−αp)/2, where two
stable fixed points emerge separated by an unstable one,
cf. fig. 1(b) and fig. 1(c). The incipient bistable regime in-
volves the coexistence of the states of higher and lower R,
which one may refer to as the “up” and the “down” state,
respectively. Figure 1(b) indicates that (Ip, αp) is actu-
ally a cusp point, viz. the locus where two saddle-node
bifurcation curves meet. Thus, for α < αp, the mean-field
model has a unique stable fixed point, whereas for α > αp,
it exhibits bistability within a “bistability tongue”. The
latter is delineated by the saddle-node bifurcations where
the “up” state is born or the “down” state is annihilated.
Increasing α in the tongue area reduces R of the unstable
state. This has the effect of constricting the attraction
basin of the “down” state, such that the “up” state be-
comes a prevailing feature.

In the presence of coupling delay, eq. (5) is found to
undergo Hopf bifurcation for τ = 1

ω arctan(−ω), where
ω2 = [6α(X2

0 −X0 +2B]2 −1, with X0 denoting the fixed-
point solution. The condition ω2 > 0 can be used to de-
termine the parameter regions admitting such a scenario,
cf. the shaded domain in fig. 1(b). Note that enhancing τ
may give rise to Hopf bifurcation regardless of whether the
delay-free system is monostable or bistable for the given
parameter set (α, B, I). The bifurcation diagram in fig. 2
refers to the case where the delay-free system is monos-
table, whereas fig. 3(a) concerns the bistable case. In the
latter instance, we find that only the “up” state may un-
dergo Hopf bifurcation, which results in a coexistence of
the “down” state and the limit cycle.

For both the scenarios above, we have verified that the
exact system displays the behavior qualitatively analogous
to that of the mean-field model, see fig. 3(b). An impor-
tant point is that the mean-field model correctly antici-
pates not only the stationary states, but also the creation
of stable limit cycles, which we interpret as the onset of
mean rate oscillations. Interestingly, Hopf bifurcation is
not the only mechanism giving rise to rate oscillations. In
particular, an increase of τ may as well lead to global fold-
cycle bifurcations, where a stable and a saddle cycle are
born. As a corollary, one finds windows of bistable rate
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Fig. 2: (Color online) Bifurcation diagram R(τ ) numerically
obtained for the mean-field model under the parameter set
I = 0.03, B = 0.001, α = 2.165, N = 400. The horizontal
line corresponds to the “up” state, which is destabilized via
Hopf bifurcation (HB). The oscillatory solutions above HB are
represented by the corresponding amplitudes. Within the two
τ intervals indicated by the dashed lines, the mean-field model
exhibits bistability between the two limit cycles, which is asso-
ciated to the occurrence of fold-cycle bifurcations.

oscillations with different amplitudes, cf. the two inter-
vals indicated by the dashed lines in fig. 2. Note that in
the interval around τ ≈ 0.7, the saddle cycle acts as a sep-
aratrix between the cycle created via Hopf bifurcation and
the stable cycle emerging from the fold-cycle bifurcation,
whereby the latter has a larger amplitude. The bistability
windows terminate in a scenario involving the inverse fold-
cycle bifurcation, where the stable cycle with a smaller am-
plitude vanishes by colliding with the saddle cycle. Below
we show that the mean-field model provides meaningful
insights even for such complex dynamical regimes.

Slow rate fluctuations. – Having analyzed the mean-
field model in the limit N → ∞, one is able to anticipate
the parameter regions where the exact system is likely to
exhibit slow stochastic fluctuations of mean rate. Such a
nontrivial behavior can be expected in the domains pro-
moting bistable dynamics for the thermodynamic limit.

Let us first consider the case τ = 0. Here, the mech-
anism behind slow rate fluctuations may be explained by
invoking the paradigm of a noise-driven particle fluctuat-
ing between the minima of a double-well potential. In the
domains where the mean-field model possesses two stable
stationary states for N → ∞, each of them may be asso-
ciated to a minimum of the potential, while the separatrix
provides for the barrier. The noisy term emerging for finite
N can then facilitate transitions between the wells.

In order to obtain the form of the potential guiding
the system dynamics, we use the adiabatic approxima-
tion, which consists in replacing S by its stationary value
S0 = D+B(H′(X))2 given by (3). Substituting this in (2)
and rewriting the latter in terms of X , one obtains

dX

dt
= − dV

dX
+

√
Φζ. (6)

Fig. 3: (Color online) (a) Bifurcation diagram R(τ ) numeri-
cally obtained for the mean-field model under the parameter
set I = 0.06, α = 1.3, B = 0.002. The horizontal lines denote
the levels of the “down” (blue line) and the “up” state (red
line), whereby the latter undergoes Hopf bifurcation (HB) at
τ = 1.495. The oscillatory solutions above HB are represented
by the associated amplitudes (green lines). (b) R(t) series of
the exact system (blue solid lines) and the mean-field model
(red dotted lines) illustrate a bistable regime involving the co-
existence of the oscillatory solution and the “down” state. The
results are obtained for τ = 1.9 and N = 400, with the remain-
ing parameters being the same as in (a).

Here, V (X) = αX4/2 − αX3 + (6αB + 1)X2 − (6αB +
I)X + O(1/N), whereas the macroscopic noise is given
by Φ = α2(2 + α2) [36BX2(1 − X)2 + D]/N . The po-
tential V (X) has a double-well form above the pitchfork
bifurcation. Note that the switching between the min-
ima of V (X) should unfold in a sufficiently close vicin-
ity of the pitchfork bifurcation, because too far above
it, the barrier becomes too high for the noisy term to
overcome it.

As expected, we have found slow rate fluctuations by
numerical simulations of the exact system within the in-
dicated parameter region. There, the typical X(t) series,
such as the one in fig. 4(a), can be described as alterna-
tions between the “up” and the “down” state of the mean-
field model. This is corroborated by the bimodal form of
the probability distribution f(X) obtained from the X(t)
series, cf. fig. 4(b). The corresponding V (X) is plotted in
the same figure in order to illustrate that the coordinates
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Fig. 4: (Color online) (a) Slow rate fluctuations in the X(t) series of a network of N = 400 neurons with parameters B = 0.004,
D = 0.02, α = 0.7, I = 0.1505. The latter are the same as in fig. 1(c). Horizontal lines indicate the levels associated to “up”
and “down” states of the mean-field model. (b) V (X) denotes the potential for the mean-field model, whereas f(X) presents
the histogram obtained from the X(t) series from (a). (c) The solid line and the dots refer, respectively, to the dependences
θ(α) obtained analytically for the mean-field model and numerically for the exact system. (d) Φ(X) determined analytically
for the mean-field model (6). The network parameters in (b)–(d) are adopted from (a).

of f(X) maxima approximately coincide with the location
of wells of V (X).

The slow rate fluctuations are observed in a confined
parameter region, as shown in fig. 4(c). The dots indicate
the numerically determined transition rate θ for the exact
system as a function of the coupling parameter α. Using
the mean-field model, one is further able to estimate θ
analytically. In this context, first note that the noise in-
tensity in eq. (6) depends on X , which implies that V (X)
has a fluctuating barrier. Nevertheless, in a first approxi-
mation, the problem may be reduced to the scenario with
a stationary barrier. To justify this, we have plotted in
fig. 4(d) the dependence Φ(X) for the parameter set from
fig. 4(a). One learns that Φ is bounded for X values be-
tween the wells, such that the average value Φmean can be
taken as representative. Since the noise intensity is suf-
ficiently small compared to the barrier height, the mean
first-passage time from one well to the other may be esti-
mated by the Kramers formula [53,54],

TX±→X∓ ≈ π√|V ′′(Xu)|V ′′(X±)
exp

[
V (Xu) − V (X±)

Φmean

]
.

(7)
Here, X− (“down” state) and X+ (“up” state) refer to
coordinates of minima of V (X), whereas Xu is the loca-
tion of its maximum. The total transition rate θ is then
given by θ = 1/(TX+→X− + TX−→X+). The solid line
in fig. 4(c) shows the dependence θ(α) obtained for the
mean-field model by applying the described approxima-
tion. Note that the indicated α interval where θ is positive
lies quite close to the one where the exact system exhibits

rate fluctuations. Moreover, the θ values estimated ana-
lytically are of the same order as those observed numer-
ically, which further evinces that the mean-field model
predicts the behavior of the exact system in a satisfactory
fashion. The point that their matching is only qualitative
reflects the fact that the mean-field model becomes less
accurate in the vicinity of the pitchfork bifurcation [41].

The mean-field model can also account for the mecha-
nism behind more intricate slow rate fluctuations observed
in the presence of coupling delays (τ > 0). In particular, it
allows one to predict the occurrence of stochastic switch-
ing between the different oscillatory solutions. These tran-
sitions take place in the parameter domain where the
mean-field model possesses two coexisting stable oscilla-
tory solutions for N → ∞, cf. fig. 2. An example of
such solutions is illustrated in fig. 5(a) for τ = 0.7 and
the remaining parameters fixed as in fig. 2. Note that the
oscillations of larger (smaller) amplitude correspond to a
limit cycle born via a global fold-cycle (Hopf) bifurcation.
For the given parameter set, we find that the exact sys-
tem displays large fluctuations of mean rate, cf. fig. 5(b).
These fluctuations may be interpreted as noise-induced
switching between the two oscillatory solutions.

Nevertheless, one also observes that the matching be-
tween the dynamics of the mean-field model and the
exact system is qualitative, but rather lacks the quanti-
tative character. In particular, the amplitudes of the two
solutions found for the mean-field model are quite close,
whereas the characteristic amplitudes of the two oscilla-
tory regimes involved in slow stochastic fluctuations for
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Fig. 5: (Color online) (a) Bistable dynamics of the mean-field
model characterized by the coexistence of two limit cycles. The
cycle with larger amplitude (green line) is born via the fold-
cycle bifurcation, whereas the solution of smaller amplitude
(black line) derives from the Hopf bifurcation. The delay is
set to τ = 0.7, while the rest of parameters are as in fig. 2.
(b) R(t) series for the network of N = 400 neurons shows slow
stochastic fluctuations for the parameter set from (a).

the exact system are much further apart, cf. fig. 5(a)
and fig. 5(b). This discrepancy derives from the gen-
eral fact that the system becomes quite sensitive to
small perturbations in the vicinity of a bifurcation, which
severely affects the validity of the effective model. In this
case, the role of such small perturbations is assumed by the
finite-size effects. Note that we have already shown in [41]
that the finite-size effect grows so large in the vicinity of a
pitchfork bifurcation that one cannot use simple lineariza-
tion to estimate it. We suspect that essentially the same
scenario occurs here as the system in fig. 5 lies close to a
fold-cycle bifurcation.

Discussion. – We have demonstrated how the indi-
vidual and combined effects of different noise terms and
coupling delay give rise to slow fluctuations of mean rate
in a random neural network. It has been shown that the
generic mechanisms and the underlying statistical features
can be qualitatively accounted for by looking into the ap-
propriate second-order stochastic mean-field model. In the
delay-free case, the basic scenario behind slow rate fluctua-
tions may be characterized as noise-driven transitions of a
particle in a double-well potential. In the thermodynamic
limit, the mean-field model displays bistability between
the “up” and the “down” state, whereas the finite-size
effect consists in introducing a noise term that induces
transitions between the metastable states. Apart from

anticipating the parameter domains that promote rate
fluctuations, the analysis of the mean-field model has al-
lowed us to estimate the associated transition rates.

Our results further indicate that introducing coupling
delays into the network model facilitates the emergence
of mean rate oscillations. An interesting finding is that
the cooperative action of noise and delay may lead to slow
fluctuations that can be interpreted as stochastic mixing
between two different oscillatory regimes. The predictions
of the mean-filed model remain qualitatively valid even for
such unexpected scenarios.

It is relevant to estimate how the typical durations of
“up” and “down” states from our simulations compare to
lifetimes of such states in biological networks, which are
established to comprise a range from several hundred ms
up to ∼ 2 s [12]. In order to do so, we take into account
that the time constant τm = 1/λ should be of the order
of 1 ms [55,56], from where one may infer that a time unit
in eq. (1) roughly corresponds to ∼ 10−3 s. Thus, when
translated to real time units, the residence times observed
in fig. 4(c) span the range of about 800–2000 ms, which
approximately coincide with a biologically plausible range.

So far, two alternative scenarios have been suggested
in modeling studies to explain for the occurrence of rate
fluctuations, emphasizing either the impact of synaptic
plasticity or the network topology. By the first scenario,
cycling of “up” and “down” states is promoted by a mech-
anism based on short-term synaptic depression [57,58],
whereby the extinction of “up” state is triggered by the
activity-dependent self-inhibition. By the other scenario,
slow rate fluctuations emerge in balanced excitatory-
inhibitory networks [45,59,60], if the latter embed clus-
tered subnetworks [2]. In principle, an analogous form of
behavior can also be recovered for balanced networks in
the vicinity of transition to chaos [61]. At variance with
our approach, prior studies have not explicitly addressed
the influence of noise, either in the onset of the rate fluc-
tuations or the underlying statistics. Also, the previous
research does not refer to the effects of coupling delay.

An important open question is whether and how more
complex network topologies would affect the robustness
of rate fluctuations. In our setup with random topology,
the effect is relatively sensitive to parameter values. How-
ever, given the recent report that the macroscopic rate
fluctuations are robust in balanced networks with embed-
ded clusters [2], we have begun to develop a mean-field
model for networks with an excitation-inhibition balance
and clustered architecture. We believe that the mean-field
approach will allow us to gain a deeper understanding of
the relation between the network structure and the slow
rate fluctuations.
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Philos. Trans. R. Soc. A, 367 (2009) 1079.

[30] Folias S. E. and Bressloff P. C., Phys. Rev. Lett., 95
(2005) 208107.

[31] Pinto D. J. and Ermentrout G. B., SIAM J. Appl.
Math., 62 (2001) 206.

[32] Laing C. R., Troy W. C., Gutkin B. and
Ermentrout G. B., SIAM J. Appl. Math., 63 (2002)
62.

[33] Jirsa V. K. and Haken H., Physica D, 99 (1997) 503.
[34] Bressloff P. C., SIAM J. Appl. Math., 70 (2009) 1488.
[35] Bressloff P. C., Phys. Rev. E, 82 (2010) 051903.
[36] Buice M. A. and Cowan J. D., Phys. Rev. E, 75 (2007)

051919.
[37] Brunel N. and Hakim V., Neural Comput., 11 (1999)

1621.
[38] Hasegawa H., Phys. Rev. E, 67 (2003) 041903.
[39] Hasegawa H., Phys. Rev. E, 75 (2007) 051904.
[40] Anderson R. A., Musallam S. and Pesaran B., Curr.

Opin. Neurobiol., 14 (2004) 720.
[41] Klinshov V. and Franović I., Phys. Rev. E, 92 (2015)
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